MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging
نویسندگان
چکیده
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-offlight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA_Salomon in brain TOF-PET/MR imaging. A clinical FDG head PET/CT/MR dataset was used to simulate a 40M-count PET data acquisition with TOF resolution of 580 ps. In MLAA_GMM, Dixon MR images are segmented into outside air, fat/soft tissue classes and an MR low-intensity class corresponding to air cavities, bone and susceptibility artifacts. A mixture of 3 Gaussians (air, fat/soft tissue and bone) was used for the low-intensity class, while uni-modal Gaussians were used for other classes. Bias performance of the algorithms was evaluated against CTbased and 4-class MR-based attenuation correction methods. Region-of-interest analysis of our simulations showed that the 4-class and MLAA algorithms result in –4.9% and –5.8% bias in soft tissue and –18.5% and –12.4% bias in bone, respectively. Inclusion of MR constrains in MLAA_Salomon and MLAA_GMM resulted in –6.6% and –4.1% bias in soft tissue and –16.1% and –13.0% in bone, respectively. It was found that the performance of MLAA_Salomon depends highly on the robustness of MR segmentation, particularly at air/bone interfaces. The proposed approach effectively exploits MR prior information and produces attenuation maps that are spatially and statistically more consistent with true attenuation maps.
منابع مشابه
MR-guided joint reconstruction of activity and attenuation in brain PET-MR
With the advent of time-of-flight (TOF) PET scanners, joint maximum-likelihood reconstruction of activity and attenuation (MLAA) maps has recently regained attention for the estimation of PET attenuation maps from emission data. However, the estimated attenuation and activity maps are scaled by unknown scaling factors. We recently demonstrated that in hybrid PET-MR, the scaling issue of this al...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملDynamic brain PET/MR using TOF reconstruction.
GE Healthcare, USA In a functional PET/MR study, it is difficult to get good temporal resolution of activity distribution from PET images because of the need to image for a certain length of time to get sufficient count statistics (image SNR). Time-of-flight (TOF) reconstruction can be used to increase PET images SNR and therefore increase the temporal resolution. Five patients were injected wi...
متن کاملImprovement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source.
UNLABELLED Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ...
متن کاملEmission-based estimation of lung attenuation coefficients for attenuation correction in time-of-flight PET/MR.
In standard segmentation-based MRI-guided attenuation correction (MRAC) of PET data on hybrid PET/MRI systems, the inter/intra-patient variability of linear attenuation coefficients (LACs) is ignored owing to the assignment of a constant LAC to each tissue class. This can lead to PET quantification errors, especially in the lung regions. In this work, we aim to derive continuous and patient-spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2014